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Superuniversal statistics with topological origins for non-Hermitian scattering singularities
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Vortex singularities in speckle patterns formed from random superpositions of waves are an inevitable
consequence of destructive interference and are consequently generic and ubiquitous. Singularities are topo-
logically stable, meaning that they persist under small perturbations and can only be removed via pairwise
annihilation. They have applications including sensing, imaging, and energy transfer in multiple fields such as
optics, acoustics, and elastic or fluid waves. We generalize the concept of singularity speckle patterns to arbitrary
two-dimensional parameter spaces and any complex scalar function that describes wave phenomena involving
complicated scattering. In scattering systems specifically, we are often concerned with singularities associated
with complex zeros of various functions of the scattering matrix S. Some examples are coherent perfect
absorption (CPA), reflectionless scattering modes, transmissionless scattering modes, and S-matrix exceptional
points. Experimentally, we find that all scattering singularities share a universal statistical property: Any quantity
that diverges as a simple pole at a singularity, such as detS at CPA, has a probability distribution function with a
−3 power-law tail. The heavy tail of the distribution provides an estimate for the likelihood of finding a given sin-
gularity in a generic scattering system. We use these universal statistical results to determine that homogeneous
system loss is the most important parameter determining singularity density in a given parameter space of an
absorptive scattering system. Finally, we discuss events where distinct singularities coincide in parameter space,
which result in higher-order singularities that have applications beyond the capabilities of isolated singularities.
These higher-order singularities are not topologically protected, and we do not find universal statistical properties
for them. We support our empirical results from microwave experiments with random matrix theory simulations
and conclude that the statistical results presented hold for all generic non-Hermitian scattering systems in which
singularities can occur.
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I. INTRODUCTION

Topological defects in superpositions of complex plane
waves where the amplitude vanishes were first formally intro-
duced by Nye and Berry in 1974 [1]. They showed that these
phase dislocations, later called vortices or singularities, are
due to interference effects, not dispersion. Vortices are present
in any complex scalar field, and come with integer winding
numbers that, with parametric evolution of the system, allow
for pairwise creation and annihilation of vortices with oppo-
site winding numbers [2]. Due to the ubiquity of singularities,
they appear and have been studied in both classical and
quantum systems [3,4], from speckle patterns in disordered
optics [5–7] to nodes of wave functions [8,9], superconductors
[10–13], and quantum weak measurements [14].

In a smooth complex scalar field S that occupies a
d-parameter space, there are an infinite number of (d − 1)-
dimensional structures that are topologically stable, meaning
that their existence is robust to small perturbations of the
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field. An example of such a structure is the contour of
Re[S] = 0 (Im[S] = 0), although any scalar value that is
within the bounds of Re[S] (Im[S]) will have the same sta-
bility. The intersection of two distinct (d − 1)-dimensional
structures of the same field results in topologically stable (d −
2)-dimensional structures. These structures are the vortex sin-
gularities that have drawn so much interest. The simplest
example is S = 0 + i0 as the intersection of Re[S] = 0 and
Im[S] = 0, but the intersection of Re[S] = a and Im[S] = b
is the complex zero of the field S − (a + ib) [15–17]. In
this paper, we will use the term “fundamental singularity” to
refer to a vortex of a complex scalar field, whatever that field
may be.

However, while two distinct d − 1 structures of a single
field can intersect to create a d − 2 structure, the intersection
of two d − 2 structures of a single field results in vortex-
antivortex annihilation, so there are no d − 3 or beyond
dimensional structures. This is equivalent to stating that a
complex scalar field has two degrees of freedom, d − 1 struc-
tures are constraints on one of those degrees of freedom (such
as constraining only Re[S]), while d − 2 structures are con-
straints on both (i.e., both Re[S] and Im[S]). It is impossible
to constrain more degrees of freedom than S has. Hence,
without loss of generality, we can use the language of the
d = 2 case for simplicity, that being topologically protected
points (d − 2) and curves (d − 1) [18]. In the rest of this
paper, any mention of points and curves is implicitly referring
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to “points in two-dimensional parameter space” and “curves
in two-dimensional parameter space.”

A network of such points in two dimensions results in
what are known as “speckle patterns” [19–21]. We reiterate
the pervasiveness of singularities by referencing the use and
study of speckle patterns for metrology [22–24], velocimetry
[25,26], nondestructive testing [27,28], imaging techniques
such as digital image correlation [29,30] and speckle contrast
imaging [31,32], and more. There is also a rich literature about
the statistical properties of speckle patterns [6,33–35]. In this
paper, the concept of speckle patterns is generalized to any
complex scalar field in arbitrary parameter space. Singular-
ities as curves in three-dimensional parameter space can be
seen in Fig. 2 of Ref. [21] and Appendix C.

In this paper, we specifically consider the singularities of
the scattering S matrix of a non-Hermitian scattering cav-
ity that is open to the outside world through M asymptotic
scattering channels. The scattering matrix relates the vectors
of ingoing ψin and outgoing ψout monochromatic waves by
|ψout〉 = S |ψin〉, and can be related to the effective Hamil-
tonian of the closed cavity through the Heidelberg approach
[36–41]. We focus on the S matrix because it is experimentally
accessible in many scattering platforms (including acoustics,
particle physics, quantum transport, nondestructive testing,
electromagnetic waves, etc.) and contains a depth of infor-
mation about the closed system and its scattering processes.
Related to the S matrix are the impedance Z , admittance Y ,
and Wigner reaction K matrices [42] that have similar proper-
ties and show the same singularity statistics.

One method through which information about a system
can be extracted from the S matrix is analysis of complex
time delays. Complex time delays are energy (or equivalently
frequency) derivatives of functions of the S matrix (such as
detS or Sxx) and can be directly related to time and center-
frequency shifts of time-domain pulses propagating through
the system [43,44]. Time delays have previously been used
to determine the locations of poles and zeros of S matrix in
the complex frequency plane [38,45–49], which are related to
the eigenvalues of the system’s effective Hamiltonian [47–50].
Another established application of time delay is identifying
optimal wave configurations with high sensitivity, for use in
both cavity and wave-front shaping [51–54].

Recently, it was found that the probability density
functions (PDFs) of every complex time delay quantity
[46,49,55–57] in non-Hermitian systems have the same uni-
versal −3 power-law tail [58,59]. Since complex time delays
diverge at singularities of their associated scattering parameter
[54,60], the tails of the PDFs give a measure of the abundance
of these phenomena. In this paper, we will go further to show
that the PDF of any quantity that has a simple pole divergence
solely at a scattering singularity has the same −3 power-law
tail independent of the function, singularity, or system param-
eters.

A. Fundamental singularities

One singularity that has drawn a lot of interest is known
as antilasing or alternatively as coherent perfect absorption
(CPA). This is a phenomenon characterized by all the en-
ergy injected into a system being completely absorbed, with

no reflection or transmission [45,54,61–66]. CPA has been
found in optics [67–69], acoustics [70–72], heat transfer [73],
and quantum single-photon systems [74–76]. In microwave
scattering, the signature of CPA is an eigenvalue of the S
matrix achieving complex zero, so detS is the complex scalar
function whose zero is the enabling condition for CPA [77].
Alongside enabling CPA, detS = 0 + i0 also turns a two-
channel system into a tunable robust splitter [78].

Figure 1 is a plot of detS in a d = 2 parameter space,
obtained directly from experimental data of a wave scattering
system to be described below. The red (black) lines in pan-
els (a) and (b) correspond to the topologically stable curves
Re[detS] = 0 (Im[detS] = 0). These curves either form closed
loops or extend beyond the measured parameter space. Their
intersections at detS = 0 + i0 (CPA) are marked by white
symbols. There are many CPA points in panel (a), while panel
(b) shows a close-up view of a pair of CPA points. In panels
(c) and (d), the phase of detS is plotted with a cyclic color
map. The location of phase singularities marked by the black
circles aligns exactly with the white symbols in panels (a)
and (b). As stated earlier, a similar picture could be made by
highlighting locations of Re[detS] = a and Im[detS] = b as
well as plotting the phase of detS − (a + ib).

Another singularity of interest is an exceptional point de-
generacy of order P (EP-P) where P � 2 eigenvalues and
eigenvectors of a non-Hermitian operator become degenerate
[79–84]. Similar to CPAs, EPs have been explored in many
fields such as optics [85–88], microwave cavities [89–91],
exciton-polaritons [92], acoustics [93], waveguides [94], elec-
trical circuits [95,96], etc. In this paper, we specifically
consider EPs of the S matrix, which in general are unrelated
to the Hamiltonian EPs, except for specially contrived cases
such as in Ref. [97]. The EPs of the S matrix are the same as
those for the impedance Z , admittance Y , and Wigner reaction
K matrices [98]. EP-2s are topologically protected as they are
the zeros of the complex scalar field λ j − λk , where λk is
the kth eigenvalue of an operator HS . Exceptional points of
order higher than 2 are not topologically protected, as will be
discussed later.

Due to the eigenvalue repulsion, the raw eigenvalue dif-
ference λ j − λk can actually be a poor quantity to use for
identifying exceptional points. We instead use the eigenvector
coalescence measure |Cjk| where

|Cjk| = |〈Rj |Rk〉|
|Rj ||Rk|

is the normalized inner product of two right eigenvectors
of the scattering matrix such that S |Rj〉 = λ j |Rj〉 [98]. The
quantity |Cjk| is bounded between 0 (|Rj〉 and |Rk〉 are orthog-
onal) and 1 (|Rj〉 and |Rk〉 are degenerate, namely, an EP-2).
For a unitary scattering matrix that describes a lossless sys-
tem, the eigenvectors are always orthogonal, so there are no
exceptional points, only diabolic points (DPs) [99]. A subuni-
tary scattering matrix can have orthogonal eigenvectors, but
only as a special case, which makes the eigenvector orthog-
onality condition also of interest. We find that for a system
with Lorentz reciprocity, two-eigenvector orthogonality has
the dimension of curves (similar to the red and black lines in
Fig. 1), but if reciprocity does not hold then the orthogonality
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FIG. 1. Speckle pattern of scattering singularities in d = 2 parameter space. The experimental S-matrix data come from a tetrahedral
microwave graph. (a), (b) Magnitude of detS; red lines mark locations of Re[detS] = 0, while black lines mark locations of Im[detS] = 0.
White symbols highlight intersections that correspond to detS = 0 + i0, which are CPAs. (c), (d) Phase of detS; black circles show locations
of phase windings that align exactly with the white symbols in panels (a) and (b). Arrows on the circles in panel (d) show that the two nearby
CPAs have opposite winding numbers.

takes the dimensionality of points [98]. Going forward, only
the coalescence of two eigenvectors will be considered in this
paper, and the jk notation will be suppressed. The eigenvector
coalescence is related to the Petermann factor K = 1

1−|C|2
and the phase rigidity or condition number r =

√
1 − |C|2

[100–103].
Other simple singularities include matrix-element zeros of

the S matrix. The complex zeros of Sxx or Sxy are known as
reflectionless scattering modes (RSMs) and transmissionless
scattering modes (TSMs) [43,60,66,104–110]. In a system
with broken Lorentz reciprocity, it is possible to have Sxy = 0
or Syx = 0 independently of each other, and when only one
equals zero there is unidirectional transmission. Further, we
can define δRxy := Sxx − Syy and δTxy := Sxy − Syx as the re-
flection and transmission differences between channels x and
y. If δRxy = 0 + i0, then the two channels have symmetric
reflections, which is an interesting singularity when it occurs
in complex scattering systems without any geometric symme-
tries. Similarly if δTxy = 0 + i0, then transmission between
the two channels is reciprocal and we find that this singularity
is present in systems with broken Lorentz reciprocity [98].

As stated before, the divergence of complex time delays is
associated with scattering singularities: Wigner-Smith τWS =
−i
M

∂
∂E ln[detS] with CPA, reflection τxx = −i ∂

∂E ln[Sxx] with
RSM, transmission τxy = −i ∂

∂E ln[Sxy] with TSM, etc. Since
complex time delay itself can also take the value 0 + i0, there
are additional scattering singularities that can be identified
with complex time delay. To see why the zero of complex time
delay is interesting, we turn to recent work on interpreting
complex time delay in the frequency domain as the time and

center frequency shift of a pulse in the time domain [43,44].
This implies that the zero of complex time delay corresponds
to a minimal distortion point of the system, at which signals
are only attenuated (or amplified), but not otherwise distorted
after propagation.

There are a myriad of other scattering singularities that
we could discuss, and a more expansive listing is provided
in Appendix H.

B. Higher-order singularities

All the singularities given so far are topologically stable,
being the zero of a single complex scalar field S . In exper-
imental systems, we can use embedded tunable perturbers
to create collisions of fundamental singularities of different
fields (S and S ′) at real frequencies in a given parameter
space. These collisions are not topologically protected and
a small fluctuation in the system can move the singularities
apart. Despite their instability, such “higher-order” singulari-
ties can have properties and further applications, and so should
be of great interest.

One example of a higher-order singularity is the S-matrix
CPA-EP demonstrated in Ref. [98] to turn a complex, irregu-
lar tetrahedral graph into a robust 50:50 in-phase/quadrature
microwave splitter. CPA-EPs have also been found in acous-
tic systems [97] and in the spectrum of the Hamiltonian
[111,112]. There are also higher-order S-matrix EP-Ps that
are intersections of exactly P − 1 unique EP-2s. Because the
eigenvalue detuning around an EP has a 1

P power law, it
shows extreme sensitivity to small perturbations, leading to
proposals of EP sensors [86–88,113]. RSMs and TSMs can

043185-3



SHAIBE, ERB, AND ANLAGE PHYSICAL REVIEW RESEARCH 7, 043185 (2025)

also be made degenerate; for example, if both Sxx and Syy

equal zero simultaneously, then the system has an RSM-2,
sometimes called an RSM or RL (reflection less) EP [114]
because the eigenvectors of a reflectionless operator become
degenerate. RSM-2s have been used to create broadband per-
fect transmission [115]. Reciprocal systems have fundamental
TSM-2s and can only have TSM-Ps of even order P.

Another set of interesting higher-order singularities
are S-matrix row/column zeros. The row-zero condition∑M

y |Sxy| = 0 describes a situation in which no power leaves
the system through port x, no matter which port the initial
power was injected into the system through. The column-
zero condition

∑M
x |Sxy| = 0 describes a situation in which

all the power injected into the system through port y is com-
pletely absorbed. Of note is that in a reciprocal system, these
conditions are equivalent and both phenomena happen simul-
taneously. When both row and column j are completely zero,
the S matrix is essentially reduced in dimensionality as one
channel appears to not participate in the scattering interaction,
acting solely as an absorber.

Again, there are many ways to combine fundamental sin-
gularities into higher-order singularities, but none of these
combinations are topologically stable and the more funda-
mental singularities included, the less probable such events
become in a statistical ensemble.

C. Paper overview

This paper is structured as follows. Section II describes
the experimental systems considered and their parametric de-
grees of freedom, as well as the measurements. In Sec. III,
the experimental data are presented and discussed in three
subsections: Sec. III A has the statistics of fundamental sin-
gularities, Sec. III B presents the absorption dependence of
singularity abundance, and Sec. III C contains the statistics
of higher-order singularities, which are composite of mul-
tiple fundamental singularities. There are also Appendices
A–H that document details and additional data supporting the
claims made in the text.

Although the experimental data presented in this paper all
come from microwave systems, the agreement shown with
random matrix theory (RMT) formulation of the scattering
matrix indicates that the conclusions are generic for all wave
scattering systems. We suggest that this is not the limit, and
the “superuniversal” statistics found in these systems extend
to many other fields of physics where similar analysis can
be performed, such as the statistics of transmission zeros in
optics or singularities of quantum weak measurements as seen
in Ref. [14].

II. EXPERIMENT

We measure the M × M S matrix of various complex mi-
crowave scattering systems with calibrated Keysight PNA-X
N5242A and PNA-X N5242B microwave vector network an-
alyzers. By complex we mean that the systems are excited
with waves whose wavelengths are small compared to the
system size, and interference effects for waves following
different ray trajectories are extremely sensitive to details
of the system configuration. The systems in question are

FIG. 2. Schematics of experimental systems. (a) A tetrahedral
microwave graph (D = 1), (b) a ray-chaotic quarter bowtie billiard
(D = 2), and (c) a three-dimensional cavity with various symmetry-
breaking elements (D = 3). Scattering channels connected to the
network analyzer (top right) are marked in red and embedded per-
turbers are marked in green.

depicted in Fig. 2: (a) a tetrahedral graph (D = 1), (b) a
ray-chaotic quarter bowtie billiard (D = 2), and (c) a three-
dimensional cavity with various symmetry-breaking elements
(D = 3), where D is the wave propagation dimension. For
clarity in the schematic, the M = 2 scattering channels con-
nected to the network analyzer are shown in red and the
embedded tunable perturbers are shown in green. In the graph,
the tunable perturbers take the form of voltage-controlled
mechanical phase shifters on four of the six bonds [116–120].
These phase shifters act as variable-length cables L + δL,
allowing us to change the interference conditions at the
nodes. Mechanical phase shifters are superior to digital phase
shifters for this purpose, as digital phase shifters typically
have much higher insertion loss, whereas the mechanical
phase shifters have loss comparable to the coaxial cables
that make up the rest of the graph, and have very precise
step size resolution. In the billiard and three-dimensional
cavity, there are globally biased, voltage-controlled varactor-
loaded metasurfaces [65,121–124]. The metasurfaces give us
control over the amplitude and phase of reflected waves,
and in the reverberant scattering environments most waves
will interact with these metasurfaces multiple times, allowing
for impactful control over the scattering properties of the
systems.

The tunable perturbers make two types of measurements
possible. One is a continuous parameter sweep like the kind
shown in Fig. 1, where typically a single perturber is tuned
with very fine steps between frequency scans, while the rest
of the system parameters are held fixed. This kind of mea-
surement reveals the phase winding around singularities, and
through the use of a second perturber the dynamics of the
singularities can be visualized [65,98]. The other kind of
measurement is a statistical ensemble, where each perturber
is tuned simultaneously to very different values between fre-
quency scans. This ensures that the difference between each
realization in the ensemble is statistically significant. In other
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words, the first kind of measurement gives the scattering
matrix in a closed area (d = 2) or volume (d = 3) of param-
eter space, while the second kind of measurement provides
a reasonably ergodic sampling of a higher-dimensional pa-
rameter space (d � 4). All the statistical results discussed
in this paper will be derived from the second kind of
measurement.

We consider four global system parameters as being im-
portant and hold these fixed across realizations of a given
ensemble. These are as follows: the dimension for wave prop-
agation D (D ∈ {1, 2, 3}), number of scattering channels M
(M ∈ {1, . . . ,∞}, although our network analyzer has a limit
of M � 4), Dyson class β (β ∈ {1, 2}), and uniform cavity
dissipation η (η ∈ {0, . . . ,∞}). The Lorentz reciprocity of a
system can be broken, changing β from 1 to 2, by adding a
magnetized ferrite in the propagation path of the microwaves
[125–133]. We approximate the cavity loss to be effectively
homogeneous in all our experimental systems. In the D = 1
graph, the absorption is due to dielectric loss and conductor
resistivity in the coaxial cables and phase shifters, which are
nominally uniform [49]. In the D = 2 billiard, the majority of
the loss is caused by induced currents on the top and bottom
plates that have uniform resistivity. Finally, the D = 3 cavity
is highly reverberant, meaning that the waves interact with the
lossy boundaries many times.

Note that η is a dimensionless quantity given by η := τH η̃,
where η̃ is an internal dissipation rate proportional to the
average mode bandwidth [40,134,135]. The Heisenberg time
τH = 2π



can be related to the mean delay time of waves in a

scattering environment, where 
 is the mean mode spacing
in frequency units. Hence, the cavity absorption strength η

is inherently tied to our system dimension D, as the larger
systems have longer delay times that cause the waves to be
more strongly attenuated. Since both η̃ and τH (for D > 1)
are frequency dependent [49], by measuring the same system
in different frequency bands we can systematically vary the
value of η. Distributing absorbers in a cavity [136–139] or
attenuators on the bonds of a graph [42,120,140] is another
way to change η, though these methods can only increase the
loss. One can also employ cryogenic cooling to decrease η

[50,138,141–143]. For this paper, we have prepared systems
with η varying from 1.8 to 145, which covers well what
has been considered the low, moderate, and high absorption
strength regimes [136,140,144–148]. Table I has the values of
the parameters and number of realizations in each measured
ensemble, and more details are provided in Appendix D.

The S matrix measured by a network analyzer is depen-
dent on how well the scattering channels are coupled to the
enclosure. Our systems are designed to be well coupled, but
the coupling is still imperfect and frequency dependent. We
remove these nonuniversal effects from ensembles through
application of the random coupling model (RCM) normaliza-
tion process, which results in S matrices with perfect coupling
[117,136,149–159]. Coupling effects cannot be removed from
parametric studies like in Fig. 1 because RCM requires sta-
tistical information. The effects of coupling on scattering
singularity statistics are not addressed in this paper and will
be explored in subsequent work. For more details on the ex-
perimental systems, such as more information on the tunable
pertubers or how an ensemble value of η is calculated, see
Refs. [59, 98].

TABLE I. Table of experimental ensemble parameters. The first
three columns correspond to system dimension D, number of chan-
nels M, and symmetry class β. Since there are often multiple
ensembles that have the same values of D, M, and β, these columns
are shared for the sake of compactness. The fourth column has the
ensemble value of the cavity absorption η (as well as the estimated
number of modes in the bandwidth measured). The number of modes
is estimated by the bandwidth divided by the mean mode spacing 
.
The final column has the number of realizations in the ensemble.

D M β η values (estimated Number
number of modes) of realizations

1 1 1 2.4 (116), 7.3 (121) 715 for all ensembles
1 1 2 3.1 (119), 7.5 (124) 715 for all ensembles
1 2 1 1.8 (43), 2.1 (65), 2.4 715 for all

(116), 2.5 (43), 2.8 ensembles
(65), 4.4 (84), 5.7
(84), 7.0 (84), 7.3

(122), 10.1 (84), 11.3
(86), 16.3 (86), 21.4

(86), 30.2 (86)
1 2 2 1.9 (44), 2.9 (44), 3.1 715 for all

(119), 7.5 (125) ensembles
1 3 1 2.5 (44) 715 for all ensembles
1 3 2 3.1 (45), 3.8 (47) 715 for all ensembles
2 2 1 39.0 (68), 40.2 (145) 302, 324, 301

41.5 (76) 301
2 3 1 40.2 (145) 196
3 2 1 49.0 (1000) 804
3 3 1 49.0 (520), 69.1 804 for all

(1100), 79.2 (1400) ensembles
(1100), 79.2 (1400) ensembles

93.0 (1700), 145
(2100)

III. DATA AND DISCUSSION

In this section, we present statistical results of scattering
singularities from both experiment and RMT numerics. Note
that every scattering matrix included is perfectly coupled (see
Sec. II). We consider PDFs of functions that diverge at sin-
gularities for two reasons: (1) divergent functions are more
advantageous for finding singularities, as compared to com-
plex linear functions, because they require only one degree of
freedom and have a more telling character when singularities
occur, and (2) the PDF of a divergent function is dominated
by an infinitely long tail that corresponds to the presence of
singularities. This means that most of the PDF is of impor-
tance when considering singularities, rather than just a small
region around the singularity value. In particular, for every
fundamental singularity, it is possible to define a time delay or
some generalized delay that diverges at the singularity, as dis-
cussed in Appendix G. In Sec. III A, we present the statistics
of topologically protected points (fundamental singularities)
and curves in two-dimensional parameter space. Section III B
focuses on how absorption affects singularity abundance in
lossy systems because absorption appears to be the most
important determining parameter. Finally, in Sec. III C we
discuss higher-order singularities that show system-specific
statistics, in contrast to fundamental singularities.
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FIG. 3. (a), (b) PDFs of 〈|Re[δRxy]|〉
|Re[δRxy]| and 〈|δRxy |〉

|δRxy | from 31 ensembles of experimental scattering systems with different values for the four
parameters D, M, β, η (see Appendix D for an enumeration of the ensembles). Color gradient of curves corresponds to η (not uniformly
spaced) of the ensembles. Dashed black lines characterize the power law of the tail behavior. (c), (d) PDFs of 〈|Re[S]|〉

|Re[S]| and 〈|S|〉
|S| for various

functions S from two arbitrary ensembles. Dashed black lines characterize the power law of the tail behavior.

A. Fundamental singularities—statistics

In Figs. 3(a) and 3(b), we show the logarithmic PDFs of
〈|Re[δRxy]|〉
|Re[δRxy]| and 〈|δRxy|〉

|δRxy| from 31 ensembles of experimental scat-
tering systems with different values for the four parameters
D, M, β, η (see Appendix D for the details and Table I that
has the parameter values for each ensemble presented). Here,
δRxy = Sxx − Syy is the reflection difference between ports x
and y, and 〈|δRxy|〉 is the ensemble mean of |δRxy|. We normal-
ize by the ensemble mean value to bring the PDFs together, as
otherwise the PDFs from different systems can be distantly
shifted horizontally from each other, making it difficult to
compare the tails. We find that P ( 〈|Re[δRxy]|〉

|Re[δRxy|] ) has a universal
−2 power-law tail that holds for all systems, represented by
the dashed black line in panel (a), since 〈|Re[δRxy]|〉

|Re[δRxy]| has a sim-
ple pole at Re[δRxy] = 0, a constraint on a single degree of
freedom. Similarly, 〈|δRxy|〉

|δRxy| has a simple pole at δRxy = 0 + i0,
which are points, specifically symmetric reflection points, and
we find that P ( 〈|δRxy|〉

|δRxy| ) has a universal −3 power law repre-
sented by the dashed line in panel (b).

Three arbitrary choices were made in constructing
Figs. 3(a) and 3(b). First, the choice of complex scalar
function to investigate. There is nothing special about the
reflection difference δRxy, any function with singularities will
produce the same statistical results. Second, in panel (a) we
could have used the imaginary part of δRxy (as opposed to
the real part) and the PDF tail behavior would have been the
same; there is no particular reason to choose one over the
other. Finally, plotting the PDFs of the magnitude, without
regard to sign. This choice was made for simplicity as plotting
both positive and negative values on a logarithmic scale is
nontrivial. That was done, however, in Refs. [58,59] for the

case of complex time delay, and there the same tails were seen
on both the positive and negative sides of the distribution.

In Fig. 3(c), we show the logarithmic PDFs of eight differ-
ent functions that have simple poles at topologically protected
curves: (1) 〈|C|〉

|C| , (2) 〈|Re[detS]|〉
|Re[detS]| , (3) 〈|Re[Sxx]|〉

|Re[Sxx]| , (4) 〈|Re[Sxy]|〉
|Re[Sxy]| , (5)

〈|Re[δRxy]|〉
|Re[δRxy]| , (6) 〈|Re[τxx]|〉

|Re[τxx]| , (7) 〈|Re[τxy]|〉
|Re[τxy]| , and (8) 〈|Re[τW S]|〉

|Re[τW S]| . Just as
in panel (a), the same thing could be done using the PDFs
of the imaginary parts of these functions rather than the real,
except for 〈|C|〉

|C| as |C| is already a real number. All the data in
panel (c) come from one ensemble, a reciprocal two-channel
billiard (β = 1, M = 2,D = 2) with uniform absorption of
η = 40. Because the functions have simple poles at curves,
the PDFs all have −2 power laws as represented by the dashed
black curve. The deepest blue curve corresponding to P ( 〈|C|〉

|C| )
has a downturn and transitions to a −3 power law. This can
be explained by the fact that our experimental systems always
have some small degree of nonreciprocity that is impossible
to eliminate. Further, the network analyzer determines Sxy and
Syx independently and does not have arbitrary precision. For
most purposes, this is a negligible effect but in nonreciprocal
systems two-eigenvector orthogonality takes the dimension of
points because it requires two conditions to be simultaneously
satisfied (see Appendix C of Ref. [98]), which induces the −3
power law. In RMT simulations that are perfectly reciprocal,
this transition in the power law of the PDF tail from −2 to −3
is not seen (see Appendix E).

Panel (d) of Fig. 3 has the logarithmic PDFs of ten different
functions that have simple poles at topologically protected
points: (1) 〈|C|〉

|C| diverges at orthogonality points, (2) 1−〈|C|〉
1−|C|

diverges at exceptional points, (3) 〈|detS|〉
|detS| diverges at co-

herent perfect absortion, (4) 〈|Sxx |〉
|Sxx | diverges at reflectionless
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scattering modes, (5) 〈|Sxy|〉
|Sxy| diverges at transmissionless scat-

tering modes, (6) 〈|δRxy|〉
|δRxy| diverges at symmetric reflection

points, (7) 〈|δTxy|〉
|δTxy| diverges at reciprocal transmission points,

(8) 〈|τxx |〉
|τxx | diverges at complex reflection time delay zeros,

(9) 〈|τxy|〉
|τxy| diverges at complex transmission time delay zeros,

and (10) 〈|τW S |〉
|τW S | diverges at complex Wigner-Smith time delay

zeros. All the data in this panel come from an ensemble mea-
surement of a nonreciprocal two-channel graph (β = 2, M =
2,D = 1) with uniform absorption of η = 8. Eigenvector or-
thogonality has dimension of d − 2 in nonreciprocal systems,
but dimension of d − 1 in reciprocal systems, which is why
P ( 〈|C|〉

|C| ) appears in both panels (c) and (d). Unlike panel (c),
there is no deviation from the expected −3 power-law behav-
ior for the tails in panel (d).

Between panels (a) and (c), it should become clear that the
PDF of every function in every system that diverges with a
simple pole at a topologically protected curve has a −2 power
law. Similarly, panels (b) and (d) convey that the PDF of every
function in every system that diverges with a simple pole at a
topologically protected point has a −3 power law. A very sim-
ple mathematical argument for why the universal power laws
take these values is given in Appendix A. A figure showing the
power laws of PDFs calculated from S-matrices constructed
with RMT numerics is available in Appendix E. The fact that
RMT numerics returns statistics for scattering singularities
that are identical to our empirical results from microwave
systems reveals that these statistics are not specific to any
particular kind of wave scattering. Rather, these statistical
results describe all generic scattering systems.

Notably, in Fig. 3 we do not present the PDFs of the
inverse eigenvalue difference 1

|λ j−λk | nor the inverse eigen-

value condition number r−1. This is because neither of these
functions have a simple pole at a singularity. Because of the
eigenvalue repulsion mentioned before, the eigenvalue dif-
ference |λ j − λk| goes to zero nonlinearly; hence, 1

|λ j−λk | is

not a simple pole. Similarly, r−1 actually has a branch point
of the form 1√

(1−|C|) at an EP-2. Since they do not satisfy
the condition of having a simple pole divergence only at
a singularity, the PDFs of 1

|λ j−λk | and r−1 do not have −3
power laws. We provide some examples of PDFs of func-
tions that diverge at singularities but not as simple poles in
Appendix B.

Since a distribution with a −3 power law has an undefined
variance, a generic non-Hermitian scattering system must
have every kind of scattering singularity allowed somewhere
in its parameter space. However, it may not necessarily be
accessible depending on the tunability of the experimental
perturbers. Note also that since the −3 power-law tail is “supe-
runiversal,” the PDF of a function that diverges at a singularity
is the perfect platform for investigating which global system
parameters have the greatest effect on singularity abundance
and density. It is also worth considering what the limitations
of the “superuniversality” are, and whether there are ways
to break it, for example, by having imperfect coupling that
was seen to disrupt the −3 power laws from some but not all
complex time delay PDFs in Ref. [59].

FIG. 4. Singularity density as a function of uniform loss in (a) ex-
perimental ensembles and (b) RMT simulation. The overall trend of
reduced singularity density with increasing loss in this finite range of
η is easier to see in panel (b) as the experimental systems have more
differences than just η, which cannot all be normalized out.

In panels (a) and (b) of Fig. 3, the color gradient corre-
sponds to the absorption strength η, and there is a systematic,
though small, vertical offset of the PDFs based on the ensem-
ble value of η. This leads to different abundances of extreme
values of S . It is clear that the degree of loss is the strongest
predictor of singularity density in parameter space. For any
given quantity, the PDFs from ensembles with higher loss turn
over to the power-law tail at smaller values of the quantity
and therefore have a lower overall probability at the extreme
values associated with the scattering singularities. This agrees
with the finding in Ref. [59] that the time-delay PDFs from
ensembles with larger η had the power-law tails onset earlier,
resulting in smaller probabilities at extreme values, hence
fewer singularities in systems with more uniform absorption.
Note, however, that this is only true for systems with suf-
ficient absorption. We do not have experimental data from
an ensemble with η < 1.8, but since certain singularities are
impossible in lossless systems (consider CPA that requires
detS = 0 + i0, but if η = 0 then |detS| = 1) we expect that
there must be some range of η where increasing loss increases
the abundance of singularities.

B. Singularity dependence on absorption

It might seem counterintuitive that singularity abundance
would decrease with increasing absorption since singularities
are zeros of the complex wave fields and absorption should
suppress the fluctuation magnitude of the waves. However,
singularities, as stated before, are primarily the result of
interference effects of superpositions of random waves. In sys-
tems with large dissipation, highly attenuated waves will not
experience much destructive interference because the wave
excitations become more homogeneous and less random.
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In Fig. 4(a), we show the singularity mode density, defined
as the number of singularities per mode in the ensemble, of the
fundamental singularities EP-2, CPA, RSM-1, and TSM-1s
(or equivalently TSM-2s for reciprocal β = 1 systems) found
in our experimental ensembles as a function of η. As discussed
in Sec. II, the mean mode spacing 
 is system size and fre-
quency dependent, so η is correlated to D in our experimental
systems. Also, the techniques used to create ensembles are
different for each D, so despite the great effort made to create
diverse ensembles, there is some systematic dependence for
how “ergodically” we can explore the phase space of a given
scattering environment based on what tunable parameters we
have available. However, we still see a trend of lower singu-
larity density with increasing η, agreeing with the complex
time delay PDFs in Refs. [58,59] that downturn into the −3
tail at smaller time delay values for systems with larger η.
We performed RMT simulations using a Gaussian orthogonal
ensemble (GOE) of 600 random matrices of size 105 × 105 to
generate scattering matrices following the procedure detailed
in Appendix E, Ref. [155], and Appendix A of Ref. [154].
We use the same set of Hamiltonians and vary only the loss η

between ensembles, resulting in Fig. 4(b).
RMT numerical results shown in panel (b) reveal a sin-

gularity density that has a near power-law decrease with
increasing uniform attenuation η. There are more intrinsic dif-
ferences between our experimental ensembles than just loss,
which is why the trend is not as clear in panel (a). Overall,
it seems that singularity abundance decreases with increas-
ing loss. It should be noted that we are bounded above and
below for values of η we can simulate well with reasonable
computation time. For η > 40, we find very few (single-digit
number) singularities over an entire ensemble, and for η < 5,
the quality factor Q of the resonances becomes so large that
we need a much finer frequency spacing to ensure we properly
detect any singularities. While the frequency resolution in
RMT simulation is arbitrary, the computation time required
is not.

Note that at zero loss (i.e., a Hermitian system) certain
singularities are forbidden, namely, CPAs and EPs. Scatter-
ing parameter zeros (RSMs and TSMs) still occur because
the elements of the S matrix remain subunitary, as do
symmetric reflection points and reciprocal points in nonrecip-
rocal systems. However, the singularities can have different
characteristics in a Hermitian system. Because we cannot ex-
perimentally measure a lossless system, we turn once more to
RMT simulation. We consider the case of a reciprocal system
with two channels (β = 1, M = 2) for simplicity using the
model described in Appendix H of Ref. [98]. This model
allows for Hamiltonian H0 with a tunable parameter ν with
the equation

H0(ν) = H1 + |cos(ν)|H2 + |sin(ν)|H3, (1)

where H1, H2, and H3 are all standard GOE random matrices.
A scattering matrix that depends on both the parameter ν and
a frequency ω can be calculated using coupled mode theory
[160]:

S(ω, ν) = −IM×M + iW G(ω, ν)W †,

where G(ω, ν) = 1
ω−H0+ i

2 W †W
and the matrix W describes the

coupling between the N modes of the closed system Hamil-
tonian H0 to the M scattering channels. Uniform absorption
η can be added to the model by making the simple substition
ω → ω + iη

4π
.

For a unitary 2 × 2 scattering matrix, the reflection pa-
rameters S11 and S22 can differ by up to a phase. Recalling
that δRxy = S11 − S22, if Re[δR12] = 0, it must necessarily be
the case that also Im[δR12] = 0. This makes the symmetric
reflection condition δR12 = 0 have the dimension of a curve
as shown by the black line in Fig. 5(a). Further, it means
that if |S11| = 0, |S22| must also be zero, so the reflection
zeros are coincident and there are only RSM-2s, marked by
the pink points in Fig. 5(a). It also happens to be the case
that the TSM condition S12 = 0 + i0 has the dimension of
a curve, which is the red line labeled TSM-2 in Fig. 5(a).
The intersection of the δR12 = 0 and TSM-2 curves results
in a DP, as those locations are where the scattering matrix
is exactly the identity matrix. The DPs are marked in dark
blue.

We notice that in nonabsorbing systems, what determines
the abundance of singularities is more complicated than a sin-
gle parameter (η) having the same effect on every singularity
across different systems. Some singularities (e.g., CPAs and
EPs) will not appear at all, while other singularities (e.g.,
symmetric reflection) may have certain properties (such as be-
ing a point or a curve in d = 2-dimensional parameter space)
depend on the number of channels M. The geometrical prop-
erties of the cavity, such as size and shape, can also determine
whether certain singularities are possible [161–163]. Because
of the high degree of variability between the properties of
different singularities at zero loss (or equivalently, balanced
absorption and gain), no universal statements can be made
about singularity statistics in unitary scattering systems.

In Fig. 5(b), we show the resulting singularities when we
recalculate the S matrix using the same model and parameters
as in panel (a), but now with a small uniform attenuation
η = 0.006. We find that when a DP is perturbed in a way
that introduces non-Hermiticity, it transforms into two EP-
2s, similar to what was seen by Chen et al. [99]. This is
true for infinitesimally small amounts of loss, the smallest
attempted in the simulations was η = 6 × 10−9, which can
be seen in Appendix F. The charge of an EP-2 in an M = 2
system is determined by whether the EP is a complex zero of
S+i := S11 − S22 − 2i

√
S12S21 (+i EPs marked in dark blue)

or S−i := S11 − S22 + 2i
√

S12S21 (−i EPs marked in light
blue) [98], the phase of which are shown in panels (c) and (d),
respectively. The black circles and winding arrows show that
each DP splits into a pair of EP-2s with opposite winding and
charge (±i), such that the overall value of both these quantities
is conserved when uniform loss is introduced.

In contrast, CPAs require some finite amount of loss to
bring an S-matrix eigenvalue from the complex unit circle to
zero. Exactly how much loss is required is a nuanced question
since the trajectory of scattering eigenvalues in the complex
plane is not linear. A lower bound, if it exists, should in
principle be calculable, but is unknown to us. In the region
of parameter space for the Hamiltonian used in Fig. 5, at
η = 0.0006 no CPAs could be found; however, at η = 0.006 a
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FIG. 5. (a) Locations of scattering zeros in the (ω, ν) parameter space of an RMT simulation with η = 0. (b) Locations of scattering zeros
in the (ω, ν) parameter space of an RMT simulation using the same effective Hamiltonian and mode-channel coupling as in panel (a) but
with η = 0.006. Dashed red and black lines show the η = 0 locations of TSM-2 and δR12 = 0, which have become single (orange and black)
points with the introduction of finite absorption. (c), (d) Phase of S+i and S−i from simulation in panel (b). Black circles surround EPs (phase
singularities) and arrows show direction of phase winding.

pair with opposite winding had already been created, marked
by the green points in panel (b). With the addition of loss,
not only have two CPAs appeared and the two DPs split into
four EPs, but also the RSM-2s separated into RSM-1s (the
pair corresponding to |S22| = 0 have already annihilated by
η = 0.006, so only two remain), and the δR12 and TSM-2
lines have broken up into black and orange single points,
respectively.

Figures 4 and 5 raise several questions that are outside the
scope of this paper. Since the number of CPAs in a lossless
system is zero, there must be some critical amount of loss
ηc at which point the number of CPAs is maximized before
it starts to decrease, as we see in Fig. 4. Is there a way to
estimate ηc? In contrast, EP-2s exist in abundance at infinites-
imal loss as each DP splits into two EP-2s with the addition
of absorption, as shown in Fig. 5. But for 0 < η � 1 we do
not know what happens to the number of Exceptional Points.
Does it increase, remain stable, or monotonically decrease?
Scattering parameter zeros are similarly always present and
the same questions can be asked about them. The fact that the
four symbols for the different singularities in Fig. 4 maintain
such close proximity to each other, both in the experimental
data and in RMT numerics, suggests that all singularities are
approximately equally plentiful. Does this extend to lower
loss? If there is a critical amount ηc that maximizes the density
of CPAs, does this same amount of loss maximize the density
of all other singularities as well?

C. Higher-order singularities—statistics

Finally, we consider the question of higher-order sin-
gularities, which are composites of multiple fundamental

singularities. Through the use of tunable perturbers, it is possi-
ble to make independent singularities coincident in parameter
space, which results in applications such as the 50:50 IQ
power splitter described in Ref. [98] using a coincident CPA-
EP-2. The intersection of complex zeros of different fields
has no topological stability, and the singularities can move
apart under arbitrarily small perturbation. Consequently, we
do not find a universal power law for all PDFs of functions
that diverges at a singularity of order P > 2, for any given P.

Figure 6(a) demonstrates the experimental PDFs of 〈|S|〉
|S|

for S = 1 − |C| + |detS|, which diverge at a combined

FIG. 6. (a) PDFs of 〈|S|〉
|S| for S = 1 − |C| + |detS| from six en-

sembles of experimental scattering systems with different values for
the four parameters D, M, β, η. Color gradient of curves corresponds
to different values of η (not uniformaly spaced) of the ensembles.
(b) PDFs of 〈|S|〉

|S| for various functions S from an arbitrary ensembles.
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CPA-EP-2 of the S matrix. The different curves come from six
ensembles with different values for the parameters D, M, β, η.
The bright pink curve, which comes from the lossiest sys-
tem measured (η = 145), has a power-law fit of −3.49 as
demonstrated by the dashed blue line, while the bright yellow
curve that comes from the system with the least absorption
(η = 1.8) has a power-law fit of −4.27, demonstrated by
the dashed black line. The four other curves at intermediate
values of uniform attenuation fill out the space in between
with slopes bounded by those two values. This shows that
even though P ( 〈|detS|〉

|detS| ) and P ( 〈1−|C|〉
1−|C| ) have universal power

laws, the power law of a PDF of a higher-order combined
singularity is system detail dependent. It is interesting to note
that the steepest power law comes from the ensemble with
the lowest loss and increasing absorption makes the PDF drop
slower. This implies that although the density of individual
singularities decreases with increasing loss, their intersections
become more common. It is currently unclear why this would
be the case.

Panel (b) of Fig. 6 has PDFs of five different quantities
from an experimental nonreciprocal (β = 2) graph (D = 1)
with M = 2 channels and η = 3. In orange is P ( 〈|Sxx |〉

|Sxx | ) for
reference. The blue curve is the PDF that combines |Sxx|
and |Syy|, which shows the abundance of RSM-2s. Similarly,
the red curve combines |Sxx| and |Sxy|, which shows the
abundance of S-matrix row zeros. Despite the overall non-
reciprocity of the system, statistically row and column zeros
behave the same so we do not show a PDF for |Sxx| and |Syx|.
The purple curve combines |Sxx|, |Sxy|, and |Syx| to show the
probability of a simultaneous row and column zero. This curve
is steeper than either the red or the blue ones, as the addition of
another constraint dramatically reduces the likelihood of such
an event. A third-order singularity like this is so improbable
that the PDF from this ensemble does not get past 〈|S|〉

|S| = 6,
which means that definitely none of these singularities were
captured in this ensemble. The green curve examines the case
of a zero of the full 2 × 2 scattering matrix, and is therefore
even steeper, and ends earlier than the purple curve. The
more constraints, the higher the order of the singularity being
considered, the harder it is to get to the tail of the PDF to
identify a power law.

A further statement should be made at this stage about
higher-order singularities of the scattering matrix. The fun-
damental singularities being combined are of not wholly
independent complex scalars. CPAs are zeros of detS, but EPs
also depend on the principal invariants of the S matrix, one of
which is its determinant. Similarly, Sxx and Sxy have inherent
correlations that can depend on many factors, including the
number of channels M or loss η, as well as more complicated
issues not considered in this paper such as imperfect mode-
channel coupling. It is possible that truly universal statistics
exist for composites of fully independent singularities, but it
is very difficult to construct multiple complex scalar functions
with no correlations out of a physical scattering matrix.

IV. CONCLUSION

We have examined the statistical properties of S-matrix sin-
gularities by generalizing the concept of singularity speckle

patterns to arbitrary two-dimensional parameter spaces and
any complex scalar function that describes wave phenom-
ena involving complicated scattering. The statistics discussed
come from experimental microwave resonant systems with the
number of channels ranging from M = 1 to M = 4. Both sys-
tems with and without Lorentz reciprocity were considered, as
well as a wide range of uniform absorption (1.8 � η � 145).
Supporting RMT simulations were conducted with results that
agree with the empirical data, showing that these findings
are generic to all wave scattering systems, such as acoustic,
optical, and photonic resonators. Fundamental singularities,
which are topologically protected vortices of complex scalar
fields in two-dimensional parameter space, have a “superuni-
versal” statistical rule that a function that has a simple pole at
a singularity has a PDF with a −3 power-law tail. These PDFs
can then be used to estimate singularity abundance based on
system parameters, and a general rule for absorbing systems
is an increase in absorption leads to a decrease in singularity
density. Higher-order singularities, which are the degeneracies
of fundamental singularities, are not topologically stable and
we do not see any universal statistical properties for them.

Several questions about how the singularity abundance
depends on absorption have been raised by these results and
are suggested as future work. The statistical “superuniversal-
ity” seen here may depend on having perfect coupling, as
was found for complex time delay PDFs in Ref. [59]. How
coupling between a scattering environment and the channels
leading in and out affects the universal power laws and singu-
larity density presented in this paper is another unexplored
problem. There are also opportunities for similar analysis
in other fields of physics, as complex scalar fields or order
parameters are commonly studied quantities.
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APPENDIX A: SIMPLE MATHEMATICAL REASON
FOR UNIVERSAL POWER LAWS

Every fundamental, first-order singularity can be written as
a zero of some complex scalar function S = u + iv = reiθ . If
the PDF Pθ (θ ) is uniform, a reasonable assumption to make
and true for all functions S considered in this paper, then the
probability density function of S in polar coordinates can be
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written as

Ppolar
S (r, θ ) = 1

2π
Pr (r). (A1)

We desire the PDF of T = ρeiφ , where T = 1
S . If there is

symmetry in θ , then there is symmetry in φ = −θ ; hence, we
can write

Ppolar
T (ρ, φ) = 1

2π
Pρ (ρ). (A2)

We perform a standard change of variable trick using a Dirac
delta function to compare the right-hand sides of Eqs. (A1)
and (A2):

Pρ (ρ) =
∫

Pr (r)δ

(
ρ − 1

r

)
rdr.

The delta function can be transformed in the following
manner:

δ

(
ρ − 1

r

)
= δ

(
r − 1

ρ

)∣∣∣∣dρ

dr

∣∣∣∣
−1

= δ

(
r − 1

ρ

)
1

ρ2
,

which when plugged into the above expression returns

Pρ (ρ) =
∫

Pr (r)δ

(
r − 1

ρ

)
1

ρ2
rdr

= 1

ρ3
Pr

( 1

ρ

)
, (A3)

which has the empirically found −3 power law. Something
similar can be done to show that the PDF Pw(w) has a −2
power law, where w = 1

u . The steps are the same:

Pw(w) =
∫

Pu(u)δ

(
w − 1

u

)
du,

δ

(
w − 1

u

)
= δ

(
u − 1

w

)∣∣∣∣dw

du

∣∣∣∣
−1

= δ

(
u − 1

w

)
1

w2
,

Pw(w) =
∫

Pu(u)δ

(
u − 1

w

)
1

w2
du

= 1

w2
Pu

( 1

w

)
, (A4)

and result in the expected −2 power law.
To show that this is purely a mathematical result that re-

quires no physics, we generated 109 complex numbers GN
from a Gaussian normal distribution. Figure 7 shows the PDFs
of 〈|GN |〉

|GN | , 〈|Re[GN ]|〉
|Re[GN ]| , and 〈|Im[GN ]|〉

|Im[GN ]| . Indeed, we see the same −3
and −2 power laws as in our experimental scattering matrix
data.

APPENDIX B: OTHER POWER-LAW TAILS

As discussed in the paper, the condition for the PDF of a
quantity to have a −3 (−2) power-law tail is that the quan-
tity diverges as a simple pole at a singularity (one degree
of freedom constraint of a complex scalar function). If the
divergence does not have the form of a simple pole, the tail
of the PDF will not have a −3 power law, in general.

As mentioned before, the condition number r has a branch
point at an EP-2 since it can be written as r =

√
1 − |C|2

[77]. Therefore, even though 1
r diverges at an EP-2, the same

FIG. 7. PDFs of the inverse of complex Gaussian random num-
bers GN . These PDFs show the same power-law tails as the
experimental data and RMT numerics: −3 for P ( 〈|GN |〉

|GN | ) and −2 for

P ( 〈|Re[GN ]|〉
|Re[GN ]| ) and P ( 〈|Im[GN ]|〉

|Im[GN ]| ).

as 1
1−|C| and the Petermann factor K , the PDF P ( 〈r〉

r ) has a
tail with a −5 power law, not −3. In Fig. 8, we show the
experimental PDFs for these three quantities, where the data
come from the same D = 2, M = 2, β = 1, η = 40 ensemble
as panel (c) of Fig. 3. To further illustrate that the −5 power
law results from the way 1

r diverges at an EP-2, we show the
PDFs of 〈|S11|〉

|S11| raised to different powers in Fig. 9. We label

each PDF by the power law of the tail and find that P ( 〈|S11|1/2〉
|S11|1/2 )

has the same −5 power law as P ( 〈r〉
r ). Notably, 1

|S11|1/2 has a

branch point at an RSM-1, just like 1
r at an EP-2. The red and

purple curves (P ( 〈|S11|2〉
|S11|2 ) and P ( 〈|S11|3〉

|S11|3 ), respectively) further
show that the PDFs of functions that have higher-order poles
at singularities also do not have −3 power-law tails.

FIG. 8. PDFs of one over one minus the eigenvector coalescence
(1 − |C|)−1, Petermann factor K , and inverse condition number r−1

from the same experimental ensemble as panel (c) of Fig. 3. All
three of these quantities diverge solely at EP-2s. Dashed black lines
characterize the power laws of the tail behaviors.
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FIG. 9. PDFs of 〈|S11|〉
|S11| raised to different powers. The S11 data

come from the same experimental ensemble as panel (c) of Fig. 3.
All the quantities diverge solely at S11 = 0 + i0 (RSM-1). Dashed
black lines characterize the power laws of the tail behaviors.

APPENDIX C: SINGULARITIES IN d = 3
PARAMETER SPACE

As stated in Sec. I, while singularities form speckle pat-
terns of points in d = 2-dimensional parameter space, in
d = 3 they form continuous curves because singularities
always have dimension d − 2. These curves either form
closed loops or trail off the edge of the explored parame-
ter space, with no end points visible. Note that this is the
same property we see for the (d − 1)-dimensional curves in
a d = 2-dimensional parameter space. In d = 3 space, the
(d − 1)-dimensional topologically protected structures such
as Re[detS] = 0 take the form of surfaces that are either
closed or extend beyond the limits of the explored parameter
space. In simulations, it can be seen that sometimes d − 1
structures in d = 2 space extend out to infinite value of certain
parameters (such as loss η), so we assume that the same must
be true for d − 2 structures in higher-dimensional spaces.
Experimentally, our tunable perturbations are limited within
some range, so we cannot verify this assumption.

In Fig. 10, we show the locations in d = 3-dimensional pa-
rameter space of CPA singularities (detS = 0) from an experi-
mental reciprocal two-channel graph (β = 1, M = 2,D = 1).
Because this is not an ensemble measurement, and the global
properties of the graph are different at every point (two phase
shifters changing resulting in a varying total length of the
graph), there is no single η value that can be assigned to these
data. At best, we can say that 2 � η � 3 everywhere in this
parameter space based on ensemble measurements using sim-
ilar lengths in this frequency range. The olive green curve that
corresponds to ∼9.58 GHz forms a closed loop, while every
other curve extends to the edges of the included parameter
space.

In Fig. 10, there is a color gradient in frequency but visually
every line appears to be a single solid color. Most scattering
singularities, CPAs included, do not move much in frequency
under perturbations to a graph system in the form of bond
length changes. In D = 2- and 3-dimensional cavities, there
are more pronounced movements in frequency, though still
nothing dramatic. Practically, this means that it is easier to

FIG. 10. Three-dimensional parameter space view of singularity
lines for detS = 0 (CPA) from an experimental reciprocal, two-
channel microwave graph (β = 1, M = 2,D = 1) measurement.
Different colors correspond to different frequency values. The curves
do not start or stop anywhere within the interior of the measured
parameter space, only on the edges.

move multiple different S-matrix zeros to different spots along
the real frequency axis than to drag a single zero to different
spots along the real frequency axis. For graphs, most fre-
quency movement is on the order of the mean mode spacing
or less, which for this graph is about 40 MHz. An example of
this can be seen in Fig. 4(a) of Ref. [78], which shows a CPA
singularity line extending over 60 MHz, the data coming from
the same graph used in Fig. 10.

APPENDIX D: EXPERIMENTAL ENSEMBLE DETAILS

The statistical results presented in this paper were obtained
from 31 ensembles of experimental microwave systems, each
with a unique combination of the four parameters D, M, β, η.
In Table I, we provide the parameter values for these en-
sembles, as well as the estimated average number of modes
in each realization and the total number of realizations per
ensemble. Note that each realization is made up of either
64 000, 80 000, or 100 000 (depending on the capabilities of
the network analyzer used) equally spaced frequency points
so that we can well characterize the modes and ensure we
identify extreme events such as scattering singularities. Each
ensemble is therefore over 2.5 GB of independent scattering
matrix data. Details of how the systems are perturbed to create
ensembles are discussed in Sec. II.

APPENDIX E: SINGULARITY STATISTICS—RANDOM
MATRIX THEORY

The process used to arrive at statistical results from RMT
is as follows. First, we create two sets of 600 independent
Hamiltonians that are of dimension 105 × 105, generated us-
ing GOE (for β = 1) and Gaussian unitary ensemble (GUE)
(for β = 2) algorithms. Then normalized impedance matri-
ces Z are calculated using the Random Coupling Model
[59,136,149,150] with the only parameter changed between
different ensembles being the dimensionless uniform attenu-
ation η. The impedance matrices are converted to scattering
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FIG. 11. (a), (b) PDFs of 〈|Re[δRxy]|〉
|Re[δRxy]| and 〈|δRxy |〉

|δRxy | from 51 RMT ensembles with different values for the three parameters M, β, η. Color
gradient of curves corresponds to η (not uniformly spaced) of the ensembles. Dashed black lines characterize the power law of the tail
behavior. (c), (d) PDFs of 〈|Re[S]|〉

|Re[S]| and 〈|S|〉
|S| for various functions S from two arbitrary RMT ensembles. Dashed black lines characterize the

power law of the tail behavior.

matrices through the formula

S = Z − Z0IM×M

Z + Z0IM×M
.

Note that because the impedance matrices created through
RCM are normalized, the characteristic impedance Z0 = 1.
The result is a collection of ensembles of 600 independent
S-matrices, each ensemble characterized by M, β, and η. We
treat these scattering matrices generated through RMT the
same as our experimental ensembles and conduct the same
analysis to calculate singularity mode density, as shown in
Fig. 4(b).

The RMT data can also be used to calculate PDFs of
various complex scalar functions. In Fig. 11, we show the
same PDFs as in Fig. 3: (a) 〈|Re[δRxy]|〉

|Re[δRxy]| , (b) 〈|δRxy|〉
|δRxy| , and the same

eight and ten functions in panels (c) and (d), respectively. The
simulations utilize two sets of 600 independent Hamiltonians
that are of dimension 105 × 105, generated using GOE (for
β = 1) and GUE (for β = 2) algorithms. Then, the scattering
matrices are calculated using the Random Coupling Model
[59,136,149,150] with the only parameter changed between
different ensembles being the dimensionless uniform attenua-
tion η.

Identical behavior is seen in Fig. 11 as in Fig. 3: −2
power-law tails are seen panels (a) and (c), and −3 power-law
tails are seen in panels (b) and (d). This shows that even
though the data in this paper are measured from microwave
cavities, the results we present are true for all chaotic wave
scattering systems. The present paper also explains why in
the Appendix of Ref. [59] a −2 power-law tail was seen
for the probability distributions of complex reflection and

transmission time delay differences (τδR and τδT ) from Her-
mitian (η = 0) systems. As shown in Fig. 5(a), in a Hermitian
system, δR12 = 0 is (d − 1)-dimensional, not a (d − 2)-
dimensional singularity. The same is true of δT12 = 0 if the
system is also nonreciprocal. Further, the PDFs of complex
transmission time delay from a Hermitian, reciprocal system
would have −2 power laws, which is why the authors of
Ref. [59] chose to show plots from β = 2 RMT data, since
at the time they did not have the topology argument to under-
stand why they did not see −3 power laws.

A final comment is that the PDF of 〈|C|〉
|C| , where |C| is the

coalescence of the S-matrix eigenvectors, from the reciprocal
system shown in panel (c) has the expected −2 power-law
tail out to the largest values, never transitioning to −3 as seen
in the experimental data in Fig. 3(c). This is because RMT
numerics lacks the small amount of residual nonreciprocity
we always see in experimental data.

APPENDIX F: EXCEPTIONAL POINTS AT
INFINITESIMAL ABSORPTION

The addition of any amount of absorptive loss to a Hermi-
tian scattering system causes DPs to split into two, oppositely
charged EP-2s with opposite winding. Using the same Hamil-
tonian and parameter space as in Fig. 5, we reproduce panels
(c) and (d) but with η = 6 × 10−9, as shown in Fig. 12.

In this way, Exceptional Points are unique among scatter-
ing singularities in that they exist at infinitesimal loss but not
zero loss. All other scattering singularities we have found are
either already present at zero loss, such as RSMs, or have a
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TABLE II. Table of fundamental singularities of nonunitary scattering matrices. Provided are the name of the singularity, the complex
scalar function that goes to zero, a physical consequence of the singularity, and the complex time delay that diverges at that singularity.

Singularity name
Complex scalar function

that goes to 0 + i0 Phenomena
Diverging complex time

delay

Coherent Perfect
Absorption

detS Absolute absorption of all
injected power

τW S = −i
M

∂

∂E ln[detS]

Exceptional point λ j − λk Collapse of eigenbasis,
square root splitting of

eigenvalues

τC =
−i ∂

∂E ln[(TrS)2 − 4detS]

Reflectionless scattering
mode

Sxx Zero reflected power at
channel x

τxx = −i ∂

∂E ln[Sxx]

Transmissionless
scattering mode

Sxy Zero transmitted power
from channel y to channel

x

τxy = −i ∂

∂E ln[Sxy]

Reciprocal transmission in
nonreciprocal systems

δTxy = Sxy − Syx Lorentz symmetry in
nonreciprocal system

τδT = −i ∂

∂E ln[Sxy − Syx]

Symmetric reflection in
generic systems

δRxy = Sxx − Syy Reflection symmetry
between channels x and y
in nonsymmetric system

τδR = −i ∂

∂E ln[Sxx − Syy]

sufficient loss requirement before they are possible, such as
CPAs.

APPENDIX G: COMPLEX TIME
DELAY—GENERALIZATIONS

Every singularity can be associated with the divergence of
a complex time delay. Examples include Wigner-Smith time
delay diverging at CPAs and transmission time delay diverg-
ing at TSMs [59,60,62,65,107], with more examples given
in Table II. Time delays can be defined for singularities that
lack one in the literature. As an example, we will introduce
a complex coalescence time delay that diverges at EP-2s in
M = 2 port non-Hermitian scattering systems. Scattering ma-
trix exceptional points occur when λ1 − λ2 = 0, which can be
rewritten in terms of matrix invariants

√
(TrS)2 − 4detS = 0.

To avoid the square root of a complex number that leads to
phase discontinuities, we square both sides:

0 = (λ1 − λ2)2 = (TrS)2 − 4detS.

FIG. 12. Phase of S+i and S−i from the same kind of simulation
as in Fig. 5 over the same parameter space, but with smaller η = 6 ×
10−9. Black circles surround EPs (phase singularities) and arrows
show direction of phase winding.

We then define the coalescence time delay as

τC = −i
∂

∂E
ln[(TrS)2 − 4detS]. (G1)

The typical way to define time delay uses a derivative in
energy (or equivalently frequency), but the delay operator can
be generalized further as a derivative in p, where p is any
parameter of the scattering matrix [164,165]. For example, a
phase shifter length δL for a graph system like in Figs. 1 and
10, or a Hamiltonian perturbation in simulations like in Figs. 5
and 12.

We demonstrate this in Fig. 13 using the transmission
element S21 from an experimental graph. Panels (a) and (b)
show the speckle pattern in magnitude and phase of the TSM
singularities. Panel (c) has the real component of the typical
transmission time delay defined as τ21 = −i ∂

∂E lnS21 with units
of nanoseconds. It can be seen that the divergences of the
transmission time delay, where the surface instantly changes
from deep red to deep blue marked by the black circles, occur
precisely at the TSMs and nowhere else. Finally, in panel
(d) we plot the real part of a transmission generalized delay
calculated by the formula

κ21 = −i
∂

∂δL
lnS21, (G2)

which has units of inverse centimeters. The divergences in
panel (d) again occur exactly at the singularities. The data in
panel (d) are notas clean as the other panels and horizontal
streaks can be seen. This is because the phase shifter is not
as stable a perturbation as frequency and there is a longer
time taken between measurements in the vertical direction as
opposed to the horizontal.

The same result would be achieved by taking the derivative
of any other function of the scattering matrix, and with respect
to any parameter, though in the latter case the units may be
different. A logical question then arises, what is the physical
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FIG. 13. Speckle pattern of transmissionless scattering modes in d = 2 parameter space. The experimental S-matrix data come from a
tetrahedral microwave graph. (a) Magnitude of S21; red lines mark locations of Re[S21] = 0, while black lines mark locations of Im[S21] = 0.
White symbols highlight intersections that correspond to S21 = 0 + i0, which are TSMs. (b) Phase of S21, black circles show locations of phase
windings that align exactly with the white symbols in panel (a). (c) Complex transmission time delay τ21 defined as the frequency derivative
of lnS21 with units of ns; divergences occur exactly at the TSMs marked in panels (a) and (b). (d) Complex transmission generalized delay κ21

defined as the phase shifter length derivative lnS21 with units of cm−1; divergences occur exactly at the TSMs marked in panels (a) and (b).

interpretation of a complex general delay that does not have
units of seconds? As of yet we do not have a application
or understanding of generalized delay beyond its use to find
singularities.

APPENDIX H: FUNDAMENTAL SINGULARITIES
ENUMERATED

Below we provide two tables of many fundamental scatter-
ing singularities:Table III lists well-studied ones with known

TABLE III. Table of fundamental singularities of nonunitary scattering matrices. Provided are the name of the singularity, the complex
scalar function that goes to zero, a physical consequence of the singularity, and relevant references.

Singularity name
Complex scalar function

that goes to 0 + i0 Phenomena References

Coherent perfect
absorption

detS Absolute absorption of all
injected power

[45,54,61–76,78]

Exceptional point λ j − λk Collapse of eigenbasis,
square root splitting of

eigenvalues

[79–96,98]

Orthogonality point 〈Rj |Rk〉 Orthogonal eigenbasis for
a nonunitary S matrix

[98]

Reflectionless scattering
mode

Sxx Zero reflected power at
channel x

[66,104–106,108,109,114]

Transmissionless
scattering mode

Sxy Zero transmitted power
from channel y to channel

x

[43,60,66,107,110]

Reciprocal transmission in
nonreciprocal systems

δTxy Lorentz symmetry in
nonreciprocal system

[59]

Symmetric reflection in
generic systems

δRxy Reflection symmetry
between channels x and y
in nonsymmetric system

[46,47,59]

Complex transmission
time delay zero

τxy= −i ∂

∂E ln[Sxy] Minimal distortion of
transmitted pulse

[43,44]
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TABLE IV. Table of less explored fundamental singularities of non-unitary scattering matrices. Provided are the name of the singularity,
the complex scalar function that goes to zero, and for some a physical consequence. These singularities all exist, but are not known to have
applications yet.

Singularity name Complex scalar Phenomena
function that goes to

0 + i0

Other principal invariant zeros of
M × M S matrix

In =∑
1� j<k<···<n<M λ jλk · · · λn

Uncertain

Complex conjugate S-matrix
eigenvalues

λ j − λ∗
k Uncertain

Opposite S-matrix eigenvalues λ j + λk Uncertain
Negative complex conjugate
S-matrix eigenvalues

λ j + λ∗
k Uncertain

Equal reflection and transmission Sxx − Sxy Reflection at channel x
equals transmission from

channel y to x
Complex Wigner-Smith time
delay zero

τWS= −i
M

∂

∂E ln[detS] Uncertain

Complex reflection time delay
zero

τxx= −i ∂

∂E ln[Sxx] Minimal distortion of
reflected pulse

Complex reflection time delay
difference zero

τδR= −i ∂

∂E ln[Sxx − Syy] Uncertain

Complex transmission time
delay difference zero

τδT = −i ∂

∂E ln[Sxy − Syx] Uncertain

Any complex generalized delay
zero (any parameter derivative of
any function of the S matrix)

κ [see Eq. (G2) for an
example]

Uncertain

applications, while Table IV has singularities unexplored in
the literature or introduced in this paper. In both tables, we are
considering generic wave systems with either no or minimal
inherent symmetries. Otherwise certain singularities, such as

symmetric reflection, are not rare events but required phenom-
ena. This is not a complete list since any possible complex
scalar function formed out of the scattering matrix would have
singularities.
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